

Methane-Derived Polyanionic Synthons from Bis(phenylthio)methane

Francisco Foubelo, Ana Gutiérrez and Miguel Yus*

Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo 99, 03080 Alicante, Spain Fax: 34 965903549; Email: yus@ua.es

Received 7 July 1999; accepted 10 September 1999

Abstract: Successive treatment of bis(phenylthio)methane (1) with (a) n-butyllithium at 0°C, (b) a carbonyl compound [¹BuCHO, Me₂CO, Et₂CO, (CH₂)₅CO] at -40°C, (c) lithium and a catalytic amount of DTBB (5%) and (d) a second carbonyl compound [¹PrCHO, ¹BuCHO, Me₂CO, Et₂CO, (CH₂)₅CO], both at -78°C, leads, after hydrolysis, to the expected dihydroxy thioethers 5. When, after step (d), a second DTBB-catalysed lithiation is performed at temperatures ranging between -78 and 20°C, the corresponding allylic alcohols 7 are isolated. Finally, treatment of compounds 7 with 6 M hydrochloric acid gives 1,3-dienes 10 in almost quantitative yield. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Lithiation; Deprotonation; 1,3-Diols; Thioacetals; 1,3-Dienes.

Since the pioneering reports of Corey and Seebach, 1 the formation of a carbanionic center at a position α -to two sulfur atoms, and further reaction with an electrophile, has played a fundamental role in organic synthesis. Sulfur-stabilised carbanions are one of the most typical acyl anion equivalents 2 showing umpolung reactivity. 3 On the other hand, in the last few years, new methodology for the preparation of organolithium intermediates 4 has been developed consisting of a reductive lithiation of phenyl thioethers, 5 using a stoichiometric 6 or catalytic $^{7.8}$ amount of an arene as an electron carrier reagent. Taking into account both these methodologies, α -deprotonation of dithioacetals/sulfur-lithium exchange, we thought it interesting to combine them in order to generate sp^2 or sp^3 polylithium synthons. $^{9.10}$ In this paper we explore this possibility starting from a simple precursor bis(phenylthio)methane.

Deprotonation of the dithioacetal 1 with *n*-butyllithium in THF at 0°C followed by reaction with a carbonyl compound [BuCHO, Me₂CO, Et₂CO, (CH₂)₅CO] at -40°C gave an alcoholate 2, which was lithiated *in situ* by means of an excess of lithium and a catalytic amount of 4,4'-di-*tert*-butylbiphenyl (DTBB; 5 mol %)11 at -78°C to give a β -oxido organolithium intermediate 3.12 The reaction of this dianion with a second carbonyl compound [iPrCHO, BuCHO, Me₂CO, Et₂CO, (CH₂)₅CO] at -78°C gave the corresponding dialcoholate 4

which, after hydrolysis with water, yielded the expected dihydroxy thioethers 5 (Scheme 1 and Table 1). Intermediates 4 were also lithiated using the same procedure as for the transformation $2 \rightarrow 3$, giving a trianionic species 6, which was unstable under the reaction conditions used (-78 to 20°C), giving a corresponding mixture of allylic alcohols 7+7'13 (Scheme 1, Chart 1 and Table 2).

Scheme 1. Reagents and conditions: i, "BuLi, THF, 0"C; ii, 'BuCHO, or Me₂CO, or Et₂CO, or (CH₂)₅CO, -40°C; iii, Li, DTBB cat. (5 mol %), -78°C; iv, 'PrCHO, or 'BuCHO, or Me₂CO, or Et₂CO, or (CH₂)₅CO, -78°C; v, H₂O; vi, Li, DTBB cat. (5 mol %), -78 to 20°C.

Table 1. Preparation of Phenylthiodiols 5

Entry	No.	\mathbb{R}^1	R ²	R ³	R4	Yield (%)
1	5a	Н	^t Bu	Н	¹Bu	45b
2	5 b	Me	Me	Me	Me	50
3	5 c	Et	Et	Me	Me	65
4	5d	Et	Et	Et	Et	48
5	5 e	$(CH_2)_5$		Н	iPr	55c
6	5 f	(CH ₂) ₅		Н	¹Βu	75°
7	5 g	$(CH_2)_5$		Н	Ph	75c
8	5h	$(CH_2)_5$		Me	Me	46
9	5i	(CI	$H_2)_5$	Et	Et	38
10	5j	$(CH_2)_5$		(CH ₂) ₅		52

a Isolated yield of pure compounds 5 (≥95% from GLC and/or 300 MHz ¹H NMR) after column chromatography (silica gel, hexane/ethyl acetate), based on the starting dithioacetal 1. ^b A ca. 1:1:1 diastereomeric mixture (75 MHz ¹³C NMR) was obtained. ^c A ca. 1:1 diastereomeric mixture (75 MHz ¹³C NMR) was obtained.

Attempts to deprotonate intermediates 2 or 4 with *n*-butyllithium in situ under different reaction conditions to give polyanionic species 8 or 9, respectively, failed.

Table 2. Preparation of Allylic Alcohols 7 and Dienes 10

Entry	Starting material	Allyl alcohol		Diene		
		No.	Yield (%)a,b	No.	Yield (%)a,c	
1	5a	7a	42			
2	5 d	7d	32			
3	5e	7e+7'e	62 (0.4:1)	10e	>95	
4	5 f	7f+7'f	56 (1:1)	10f	>95	
5	5 g	7g+7'g	29 (0.4:1)	10g	>95	
6	5i	7i+7'i	40 (1:1)	10i+10'i	>95 (1:0.3)	
7	5 j	7 j	73	10j	>95	

^a Isolated yield of pure compounds 7 or 10 (≥95% from GLC and/or 300 MHz ¹H NMR) based on the starting materials 5 or 7; in parenthesis the corresponding regioisomers ratio from 75 MHz ¹³C NMR. ^b After column chromatography (silica gel, hexane/ethyl acetate). ^c Crude.

Finally, we treated either pure allylic alcohol **7j** (Table 2, entry 7) or the mixture **7+7'** (Table 2, entries 3-6) with a few drops of 6 M hydrochloric acid in chloroform at 20°C, affording 1,3-dienes **10** in almost quantitative yield (Chart 2 and Table 2). Only in one case (**10i+10'i**) was a mixture of regioisomers obtained.

In conclusion, we have reported here a simple way to prepare 1,3-dihydroxythioethers 5, allylic alcohols 7 and 1,3-dienes 10 starting from a very simple precursor 1 and using a combination of α -deprotonation/sulfur-lithium exchange.

Chart 2

Acknowledgements.

This project was financially supported by the DGES from the Spanish Ministerio de Educación y Cultura (MEC) (project no. PB97-0133).

References and Notes

- (a) Corey, E. J.; Seebach, D. Angew. Chem., Int. Ed. Engl. 1965, 4, 1075-1076.
 (b) Corey, E. J.; Seebach, D. Angew. Chem., Int. Ed. Engl. 1965, 4, 1077.
- For reviews, see: (a) Gröbel, B.-T.; Seebach, D. Synthesis 1977, 357-402. (b) Hase, T. A.; Koskimies, J. K. Aldrichimica Acta 1981, 14, 73-77. (c) Hase, T. A.; Koskimies, J. K. Aldrichimica Acta 1982, 15, 328-334. (d) Ager, D. J. In Umpoled Synthons; Hase, T. A., Ed.; J. Wiley & Sons: New York, 1987. (e) Hassner, A.; Lokanatha Rai, K. M. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I.; Schreiber, S., Eds.; Pergamon Press: Oxford, 1991; Vol. 1, pp. 541-577. (f) Krief, A. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I.; Pattenden, G., Eds.; Pergamon Press: Oxford, 1991; Vol. 3, pp. 86-191. (g) Gray, M.; Tinkl, M.; Snieckus, V. In Comprehensive Organometallic Chemistry II; Abel, E. W.; Stone, F. G. A.; Wilkinson, G.; McKillop, A., Eds.: Pergamon Press: Oxford, 1995; Vol. 11, pp. 39-41. (h) Nájera, C.; Yus, M. Org. Prep. Proced. Int. 1995, 27, 383-457.
- 3. These intermediates show umpolung reactivity: Seebach, D. Angew. Chem., Int. Ed. Engl. 1979, 18, 239-258.
- 4. Wakefield, B. J. Organolithium Methods; Academic Press: London, 1988.
- (a) Screttas, C. G.; Micha-Screttas, M. J. Org. Chem. 1978, 43, 1064-1071.
 (b) Screttas, C. G.; Micha-Screttas, M. J. Org. Chem. 1979, 44, 713-719.
- 6. Cohen, T.; Bhupathy, M. Acc. Chem. Res. 1989, 22, 152-161.
- 7. Yus, M. Chem. Soc. Rev. 1996, 155-161.
- 8. Previous paper from our laboratory using this methodology: Foubelo, F.; Gutiérrez, A.; Yus, M. Synthesis 1999, 503-514 (Feature article).
- 9. Foubelo, F.; Gutiérrez, A.; Yus, M. Tetrahedron Lett., preceding communication.
- 10. For a review, see: Foubelo, F.; Yus, M. Trends Org. Chem. 1998, 7, 1-26.
- 11. For a related lithiation using DTBB in a stoichiometric amount, see: Chen, F.; Mudryk, B.; Cohen, T. *Tetrahedron* 1994, 50, 12793-12810.
- 12. For reviews, see: (a) Nájera, C.; Yus, M. Trends Org. Chem. 1991, 2, 155-181. (b) Nájera, C.; Yus, M. Recent Res. Devel. Org. Chem. 1997, 1, 67-96.
- 13. (a) Secondary functionalised organolithium compounds are very unstable compounds, which suffer β-elimination even at very low temperatures. See, for instance: Barluenga, J.; Villamaña, J.; Fañanás, F. J.; Yus, M. J. Chem. Soc., Perkin Trans. 1 1984, 2685-2692. (b) For compounds 7a,e,f,g and 10e,f,g only the corresponding E-diastereomer was observed by 75 MHz ¹³C NMR of the reaction crude.